Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 352
Filter
1.
J Mass Spectrom ; 59(5): e5020, 2024 May.
Article in English | MEDLINE | ID: mdl-38659191

ABSTRACT

Exposure to arsenic can cause various biological effects by increasing the production of reactive oxygen species (ROS). Selenium acts as a beneficial element by regulating ROS and limiting heavy metal uptake and translocation. There are studies on the interactive effects of As and Se in plants, but the antagonistic and synergistic effects of these elements based on their binding to glutathione (GSH) molecules have not been studied yet. In this study, we aimed to investigate the antagonistic or synergistic effects of As and Se on the binding mechanism of Se and As with GSH at pH 3.0, 5.0, or 6.5. The interaction of As and Se in Se(SG)2 + As(III) or As(SG)3 + Se(IV) binary systems and As(III) + Se(IV) + GSH ternary system were examined depending on their ratios via liquid chromatography diode array detector/electrospray mass spectrometry (LC-DAD/MS) and liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS). The results showed that the formation of As(GS)3 was not detected in the As(III) + Se(SG)2 binary system, indicating that As(III) did not affect the stability of Se(SG)2 complex antagonistically. However, in the Se(IV) + As(SG)3 binary system, the addition of Se(IV) to As(SG)3 affected the stability of As(SG)3 antagonistically. Se(IV) reacted with GSH, disrupting the As(SG)3 complex, and consequently, Se(SG)2 formation was measured using LC-MS/DAD. In the Se(IV) + GSH + As(III) ternary system, Se(SG)2 formation was detected upon mixing As(III), Se(IV), and GSH. The increase in the concentration of As(III) did not influence the stability of the Se(SG)2 complex. Additionally, Se(IV) has a higher affinity than As(III) to the GSH, regardless of the pH of the solution. In both binary and ternary systems, the formation of the by-product glutathione trisulfide (GSSSG) was detected using LC-ESI-MS/MS.


Subject(s)
Arsenites , Glutathione , Selenious Acid , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry , Glutathione/chemistry , Glutathione/metabolism , Arsenites/chemistry , Selenious Acid/chemistry , Tandem Mass Spectrometry/methods , Spectrometry, Mass, Electrospray Ionization/methods , Chromatography, Liquid/methods
2.
Biotechnol Bioeng ; 121(1): 250-265, 2024 01.
Article in English | MEDLINE | ID: mdl-37881108

ABSTRACT

The performance of combined reduction of nitrate (NO3 - ) to dinitrogen gas (N2 ) and oxidation of arsenite (As[III]) to arsenate (As[V]) by a bioelectrochemical system was assessed, supported by ecotoxicity characterization. For the comprehensive toxicity characterization of the untreated model groundwater and the treated reactor effluents, a problem-specific ecotoxicity test battery was established. The performance of the applied technology in terms of toxicity and target pollutant elimination was compared and analyzed. The highest toxicity attenuation was achieved under continuous flow mode with hydraulic retention time (HRT) = 7.5 h, with 95%, nitrate removal rate and complete oxidation of arsenite to arsenate. Daphnia magna proved to be the most sensitive test organism. The results of the D. magna lethality test supported the choice of the ideal operational conditions based on chemical data analysis. The outcomes of the study demonstrated that the applied technology was able to improve the groundwater quality in terms of both chemical and ecotoxicological characteristics. The importance of ecotoxicity evaluation was also highlighted, given that significant target contaminant elimination did not necessarily lower the environmental impact of the initial, untreated medium, in addition, anomalies might occur during the technology operational process which in some instances, could result in elevated toxicity levels.


Subject(s)
Arsenites , Groundwater , Water Pollutants, Chemical , Arsenates/analysis , Nitrates/toxicity , Biodegradation, Environmental , Arsenites/toxicity , Arsenites/analysis , Arsenites/chemistry , Groundwater/chemistry , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis
3.
Chemosphere ; 336: 139276, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37343632

ABSTRACT

Phosphate is the biggest competitor for arsenic removal. Nanoscale metal oxides (NMOs) are commonly used to treat arsenic-contaminated water, yet their selective adsorption mechanisms for arsenic and phosphate are poorly understood. We quantified the selectivity of iron oxide (Fe2O3), zinc oxide (ZnO), and titanium dioxide (TiO2) nanosheets for arsenic in systems containing arsenic and phosphate, and determined the interaction of phosphate and arsenate/arsenite on metal oxide surfaces through batch experiments, spectroscopic techniques, and DFT calculations. We found that Fe2O3, TiO2, and ZnO nanosheets exhibit selectivity for arsenate/arsenite in the presence of phosphate, with Fe2O3 the most selective, followed by TiO2 and ZnO. The bonding mechanism on these metallic oxide surfaces dominates the selectivity. The more stable inner-sphere complexes of arsenate on the surfaces of Fe2O3 (bidentate binuclear), TiO2 (bidentate binuclear), and ZnO nanosheets (tridentate trinuclear) contribute to their preference for arsenate over phosphate. This difference in arsenate selectivity can be reflected in the difference in adsorption energy, net electron transfer number, and M - O bond length of the most stable inner sphere complexes. Overall, our study elucidated the selective adsorption mechanisms of arsenate/arsenite on Fe2O3, TiO2, and ZnO surfaces and highlighted the need to consider the competition between arsenate and phosphate during their removal from contaminated water.


Subject(s)
Arsenic , Phosphates , Water Pollutants, Chemical , Adsorption , Arsenates/chemistry , Arsenic/chemistry , Arsenites/chemistry , Density Functional Theory , Hydrogen-Ion Concentration , Oxides/chemistry , Phosphates/chemistry , Water , Zinc Oxide
4.
Water Res ; 232: 119683, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36739662

ABSTRACT

Surface complexation of arsenite (As(III)) on colloidal ferric hydroxide (CFH) plays an important role not only in the adsorptive immobilization of As(III) but also in the subsequent oxidation of As(III) to arsenate (As(V)) through light-induced ligand-to-metal charge transfer (LMCT) in water at near-neutral pH. However, the effects of natural organic matter (NOM), especially humic substances (HSs) and low molecular weight carboxylic acids (CAs), on the photochemistry of the CFH-As(III) system have not been sufficiently understood. In this work, the inhibition of photooxidation of As(III) in terms of the observed apparent rate constant (kobs) by six HSs (below 16 mg L-1) and seven CAs (below 2.5 mM) has been observed in water containing 66 µM Fe(III) and 5 µM As(III) at pH 7 under simulated solar irradiation consisting of UVA (λmax 365 nm) and UVB (λmax 313 nm) lights. Total inhibition factors (T) have been determined from the combined effect of light-screening factor (S) and competitive complexation factor (C), wherein both S and C varied with NOM concentration. S was obtained by determining the absorbance of NOM, and C was obtained by fitting modified Langmuir or Freundlich models to the amount of As(III) desorbed from CFH upon the addition of NOM. Statistical analysis between the experimental Texp and the calculated one according to Tcal = S × C showed that the Freundlich model (RMSE for HS 0.1609 and for CA 0.1771) was better than the Langmuir model and was statistically robust (QLOO2= 0.691 > 0.5). This work provided an estimation method for the effects of NOM on As(III) photooxidation in the presence of CFH as well as a deeper understanding of the transformation of arsenic species in sunlit water.


Subject(s)
Arsenites , Ferric Compounds , Ferric Compounds/chemistry , Arsenites/chemistry , Water , Humic Substances , Carboxylic Acids , Oxidation-Reduction
5.
Water Res ; 223: 119007, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36044797

ABSTRACT

Groundwater contaminated with arsenic (As) must be treated prior to drinking, as human exposure to As at toxic levels can cause various diseases including cancer. Conventional aeration-filtration applied to anaerobic arsenite (As(III)) contaminated groundwater can remove As(III) by co-oxidizing native iron (Fe(II)) and As(III) with oxygen (O2). However, the As(III) removal efficiency of conventional aeration can be low, in part, because of incomplete As(III) oxidation to readily-sorbed arsenate (As(V)). In this work, we investigated a new approach to enhance As(III) co-removal with native Fe(II) by the anaerobic addition of hydrogen peroxide (H2O2) prior to aeration. Experiments were performed to co-oxidize Fe(II) and As(III) with H2O2 (anaerobically), O2 (aerobically), and by sequentially adding of H2O2 and O2. Aqueous As(III) and As(V) measurements after the reaction were coupled with solid-phase speciation by Fe and As K-edge X-ray absorption spectroscopy (XAS). We found that complete anaerobic oxidation of 100 µM Fe(II) with 100 µM H2O2 resulted in co-removal of 95% of 7 µM As(III) compared to 44% with 8.0-9.0 mg/L dissolved O2. Furthermore, we found that with 100 µM Fe(II), the initial Fe(II):H2O2 ratio was a critical parameter to remove 7 µM As(III) to below the 10 µg/L (0.13 µM) WHO guideline, where ratios of 1:4 (mol:mol) Fe(II):H2O2 led to As(III) removal matching that of 7 µM As(V). The improved As(III) removal with H2O2 was found to occur partly because of the well-established enhanced efficiency of As(III) oxidation in Fe(II)+H2O2 systems relatively to Fe(II)+O2 systems. However, the XAS results unambiguously demonstrated that a large factor in the improved As(III) removal was also due to a systematic decrease in crystallinity, and thus increase in specific surface area, of the generated Fe(III) (oxyhydr)oxides from lepidocrocite in the Fe(II)+O2 system to poorly-ordered Fe(III) precipitates in the Fe(II)+H2O2 system. The combined roles of H2O2 (enhanced As(III) oxidation and structural modification) can be easily overlooked when only aqueous species are measured, but this dual impact must be considered for accurate predictions of As removal in groundwater treatment.


Subject(s)
Arsenic , Arsenites , Groundwater , Water Pollutants, Chemical , Arsenates , Arsenic/chemistry , Arsenites/chemistry , Ferric Compounds/chemistry , Ferrous Compounds/chemistry , Groundwater/chemistry , Humans , Hydrogen Peroxide/chemistry , Iron/chemistry , Oxidation-Reduction , Oxides/chemistry , Oxygen , Water Pollutants, Chemical/chemistry
6.
Chem Res Toxicol ; 35(9): 1589-1597, 2022 09 19.
Article in English | MEDLINE | ID: mdl-35994080

ABSTRACT

Arsenic contamination in food and groundwater constitutes a public health concern for more than 200 million people worldwide. Individuals chronically exposed to arsenic through drinking and ingestion exhibit a higher risk of developing cancers and cardiovascular diseases. Nevertheless, the underlying mechanisms of arsenic toxicity are not fully understood. Arsenite is known to bind to and deactivate RING finger E3 ubiquitin ligases; thus, we reason that a systematic interrogation about how arsenite exposure modulates global protein ubiquitination may reveal novel molecular targets for arsenic toxicity. By employing liquid chromatography-tandem mass spectrometry, in combination with stable isotope labeling by amino acids in cell culture (SILAC) and immunoprecipitation of di-glycine-conjugated lysine-containing tryptic peptides, we assessed the alterations in protein ubiquitination in GM00637 human skin fibroblast cells upon arsenite exposure at the entire proteome level. We observed that arsenite exposure led to altered ubiquitination of many proteins, where the alterations in a large majority of ubiquitination events are negatively correlated with changes in expression of the corresponding proteins, suggesting their modulation by the ubiquitin-proteasomal pathway. Moreover, we observed that arsenite exposure confers diminished ubiquitination of a rate-limiting enzyme in cholesterol biosynthesis, HMGCR, at Lys248. We also revealed that TRC8 is the major E3 ubiquitin ligase for HMGCR ubiquitination in HEK293T cells, and the arsenite-induced diminution of HMGCR ubiquitination is abrogated upon genetic depletion of TRC8. In summary, we systematically characterized arsenite-induced perturbations in a ubiquitinated proteome in human cells and found that the arsenite-elicited attenuation of HMGCR ubiquitination in HEK293T cells involves TRC8.


Subject(s)
Arsenic , Arsenites , Arsenic/metabolism , Arsenites/chemistry , Arsenites/toxicity , Cholesterol , Glycine/metabolism , HEK293 Cells , Humans , Lysine/metabolism , Peptides/metabolism , Proteome/metabolism , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
7.
Chemosphere ; 306: 135530, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35792212

ABSTRACT

A sensitive electroanalytical method for the determination of arsenite, based on a heterostructure of aminated multiwalled carbon nanotubes and gold nanoparticles, was applied in an electrocoagulation (EC) treatment for the elimination of arsenite. A sensitive quantitative response was obtained in the determination of As3+ in a secondary effluent from a wastewater treatment plant from Santiago (Chile). The preconcentration stage was optimized through a Central Composite Face design, and the most sensitive peak current was obtained at 200 s and -600 mV of time and accumulation potential, respectively, after a differential pulse voltammetry sweep. Electroanalytical determination was possible in an interval between 42.89 and 170.00 µg L-1 with a detection limit of 0.39 µg L-1, obtaining recoveries over 99.1%. The developed method was successfully applied in an electrocoagulation treatment to remove 250 µg L-1 of arsenite from a polluted effluent in a batch system. Complete arsenite removal was achieved using a steel EC system with a current density of 6.0 mA cm-2 in less than 3 min of treatment.


Subject(s)
Arsenites , Metal Nanoparticles , Nanotubes, Carbon , Arsenites/chemistry , Electrochemical Techniques , Electrocoagulation/methods , Electrodes , Gold/chemistry
8.
Chemosphere ; 304: 135269, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35691398

ABSTRACT

Arsenic contamination is an increasing global environmental problem, especially in mining industry wastewater where both arsenite (As(III)) and arsenate (As(V)) have been routinely detected. In this paper, a novel porous metal-organic framework material (ZIF-8) was composited with iron nanoparticles (FeNPs) to form a functional material (ZIF-8@FeNPs) for the simultaneous removal of As(III)/(V) from wastewater. The material effectively removed both As(III) and As(V) with removal efficiencies of 99.9 and 71.2%, respectively. Advanced characterization techniques including X-ray photoelectron spectroscopy (XPS) and Fourier infrared (FTIR) indicated that removal of As(III) and As(V) involved complex formation. Adsorption kinetics followed a pseudo-second order kinetics indicating adsorption involved chemisorption. After four cycles of reuse the he removal rate of As species was still relatively high at > 60% When ZIF-8@FeNPs were used to remove As from real wastewater from acid mines the removal efficiency was 94.27%. Finally, a As(III) and As(V) removal mechanism was proposed.


Subject(s)
Arsenic , Arsenites , Nanoparticles , Water Pollutants, Chemical , Adsorption , Arsenates , Arsenic/chemistry , Arsenites/chemistry , Iron/chemistry , Kinetics , Mining , Wastewater , Water Pollutants, Chemical/chemistry
9.
Environ Sci Pollut Res Int ; 29(50): 76417-76431, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35670936

ABSTRACT

To facilitate removing As(III) from water through an "oxidation-adsorption" process, the double-shell CuOx@MnOy hollow spheres (DCMHS) have been fabricated via a two-step co-precipitation route combined with the soft-template method. The surface characterization results showed that Mn oxides were formed without segregation and uniformly distributed on the surface of CuOx hollow spheres. DCMHS could achieve outstanding performance to remove As(III) with an As maximum adsorption capacity of 32.15 mg/g. Meanwhile, the kinetics results illustrated that the oxidative activity of DCMHS was strengthened due to its specific structure, and part of As(III) was converted to As(V) during the adsorption process. Also, air aeration could further enhance As(III) oxidation and thus improving As removal. The As(III) removal performance could be maintained under neutral and weak alkaline conditions. Phosphate, silicate, and carbonate anions could depress the removal performance, while chloride ions and sulfate anions barely influenced As removal. Moreover, DCMHS could be regenerated using NaOH and KMnO4 solutions without breaking the hollow sphere structure. Based on the spectroscopic analysis results, As(III) molecules were converted to As(V) via two pathways, including the oxidation by Mn oxides or superoxide radicals. The Cu-Mn synergistic effect could not only enhance the oxidative activity of Mn oxides but also produce superoxide radicals via the activation of surface-adsorbed oxygen molecules. Afterwards, the newly formed As(V) could be attached to the hydroxyl groups through surface complexation. Therefore, this work has provided insights into the morphology design of Mn-oxide-containing adsorbents and supplemented the interface reaction mechanisms for enhancing As(III) removal.


Subject(s)
Arsenic , Arsenites , Water Pollutants, Chemical , Adsorption , Anions , Arsenic/chemistry , Arsenites/chemistry , Chlorides , Copper , Manganese Compounds/chemistry , Oxidation-Reduction , Oxides/chemistry , Oxygen , Phosphates , Sodium Hydroxide , Sulfates , Superoxides , Water , Water Pollutants, Chemical/analysis
10.
J Environ Manage ; 317: 115497, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35751289

ABSTRACT

The adsorption of inorganic arsenic (As) plays an important role in the mobility and transport of As in the river environment. In this work, the adsorption and desorption of arsenite [As(III)] and arsenate [As(V)] on river sediment were conducted under different pH, initial As concentrations, river water and sediment composition to assess As adsorption behavior and mechanism. Both adsorption kinetics and equilibrium results showed higher adsorption capacity of sediment for As(V) than As(III). Adsorption of As(III) and As(V) on river sediment was favored in acidic to neutral conditions and on finer sediment particles, while sediment organic matter marginally reduced adsorption capacity. In addition, higher adsorption affinity of As(III) and As(V) in river sediment was observed in deionised water than in river water. For the release process, the desorption of both As(III) and As(V) followed nonlinear kinetic models well, showing higher amount of As(III) release from sediment than As(V). Adsorption isotherm was well described by both Langmuir and Freundlich models, demonstrating higher maximum adsorption capacity of As(V) at 298.7 mg/kg than As(III) at 263.3 mg/kg in deionised water, and higher maximum adsorption capacity of As(III) of 234.3 mg/kg than As(V) of 206.2 mg/kg in river water. The XRD showed the changes in the peaks of mineral groups of sediment whilst FTIR results revealed the changes related to surface functional groups before and after adsorption, indicating that Fe-O/Fe-OH, Si(Al)-O, hydroxyl and carboxyl functional groups were predominantly involved in As(III) and As(V) adsorption on sediment surface. XPS analysis evidenced the transformation between these As species in river sediment after adsorption, whilst SEM-EDS revealed higher amount of As(V) in river sediment than As(III) due to the lower signal of Al.


Subject(s)
Arsenic , Arsenites , Water Pollutants, Chemical , Water Purification , Adsorption , Arsenates/chemistry , Arsenic/chemistry , Arsenites/chemistry , Hydrogen-Ion Concentration , Kinetics , Rivers , Water , Water Pollutants, Chemical/chemistry , Water Purification/methods
11.
Chemosphere ; 303(Pt 1): 134925, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35561766

ABSTRACT

The manganese is successfully induced as a "bridge joint" to fabricate a new adsorbent (CNC-Mn-PEI) connecting cellulose nanocrystal (CNC) and polyethyleneimine (PEI) respectively. It was used to remove As (III) from waste water. It has been proved that the incompact CNC and PEI were successfully connected by Mn ions, which induced the formation of O-Mn-O bonds and the removal efficiency is maintained in the broad pH range of 4-8, even with the influence of NO3- and CO32-. The CNC-Mn-PEI was characterized by Brunauer-Emmett-Telley (BET) method and the results showed that the nanoparticle of the specific surface area was 106.5753 m2/g, it has a significant improvement, compared with CNC-Mn-DW (0.1918 m2/g). The isotherm and kinetic parameters of arsenic removal on CNC-Mn-PEI were well-fitted by the Langmuir and pseudo-second-order models. The maximum adsorption capacities toward As (III) was 78.02 mg/g. After seven regeneration cycles, the removal of As (III) by the adsorbent decreased from 80.78% to 68.2%. Additionally, the hypothetical adsorption mechanism of "bridge joint" effect was established by FTIR and XPS, which provided the three activated sites from CNC-Mn-PEI can improve the arsenic removal efficiency, and providing a new stratagem for the arsenic pollution treatment.


Subject(s)
Arsenic , Arsenites , Nanocomposites , Nanoparticles , Water Pollutants, Chemical , Adsorption , Arsenic/chemistry , Arsenites/chemistry , Cellulose/chemistry , Hydrogen-Ion Concentration , Ions , Kinetics , Manganese/chemistry , Nanoparticles/chemistry , Polyethyleneimine/chemistry , Water Pollutants, Chemical/analysis
12.
Chemosphere ; 302: 134770, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35500636

ABSTRACT

The speciation and fate of arsenic (As) in soil-water systems is a topic of great interest, in part due to growing awareness of As uptake into rice as an important human exposure pathway to As. Rice paddy and other wetland soils are rich in dissolved organic matter (DOM), leading to As/DOM ratios that are typically lower than those in groundwater aquifers or that have been used in many laboratory studies of As-DOM interactions. In this contribution, we evaluate arsenite (As(III)) binding to seven different DOM samples at As/DOM ratios relevant for wetland pore waters, and explore the chemical properties of the DOM samples associated with high levels of As(III)-DOM complexation. We integrate data from wet chemical analysis of DOM chemical properties, dialysis equilibrium experiments, and two-site ligand binding models to show that in some DOM samples, 15-60% of As(III) can be bound to DOM at environmentally-relevant As/DOM ratios of 0.0032-0.016 µmol As/mmol C. Binding decreases as the As(III)/DOM ratio increases. The organic sulfur (Sorg) content of the DOM samples was strongly correlated with levels of As(III)-DOM complexation and "strong" binding site densities, consistent with theories that thiols are strong binding ligands for As(III) in natural organic matter. Finally, a whole-cell E. coli biosensor assay was used to show that DOM samples most effective at complexing As(III) also led to decreased microbial As(III) uptake at low As/DOC ratios. This work demonstrates that naturally-occurring variations in the Sorg content of DOM has a significant impact on As(III) binding to DOM, and has implications for As(III) availability to microorganisms.


Subject(s)
Arsenic , Arsenites , Arsenic/analysis , Arsenites/chemistry , Dissolved Organic Matter , Escherichia coli , Humans , Renal Dialysis , Soil/chemistry , Sulfur
13.
Phys Chem Chem Phys ; 24(22): 13661-13670, 2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35611917

ABSTRACT

Photooxidation of As(III) by TiO2 is a complicated process in which the oxidation mechanisms are always controversial. In this study, the enhanced photooxidation rates of As(III) with increasing pH values from 8.0 to 11.0 indicate the high photocatalytic reactivity of TiO2 under alkaline conditions. Moreover, As(III) improves the production of H2O2, indicating H-abstraction from As(III) (soluble or adsorbed) for H2O2 production. Although O2˙-, h+, ˙OH and -OOH are always regarded as the reactive oxygen species in the UV-TiO2 system, the superoxo and peroxo species formed on the surface of TiO2 also contribute to As(III) oxidation. The As(III)-O-Ti(IV) surface complexes formed on TiO2, as well as the decreased bandgaps of TiO2 with increasing concentrations of As(III) indicate that the ligand-to-metal charge transfer (LMCT) pathway also contributes to the oxidation of As(III) under alkaline conditions. Electrochemical analyses further reveal that As(III) enhances the electron density on the surface of TiO2, thereby improving the catalytic reactivity of TiO2. We therefore suggest that H-abstraction from As(III) or H2O to the formed superoxo and peroxo species results in the formation of H2O2, accompanied by the oxidation of As(III). This enriches our knowledge on the oxidation of As(III), as well as other contaminants rich in -OH groups during the photocatalytic oxidation processes.


Subject(s)
Arsenites , Arsenites/chemistry , Hydrogen Peroxide/chemistry , Ligands , Metals , Titanium/chemistry
14.
J Colloid Interface Sci ; 614: 460-467, 2022 May 15.
Article in English | MEDLINE | ID: mdl-35108637

ABSTRACT

HYPOTHESIS: The easy aggregation of superparamagnetic iron oxide nanoparticles (SPION) greatly reduces their adsorption performance for removing arsenic (As) from polluted water. We propose to exploit the porosity and good diffusion properties of a cube-shaped cellulose sponge for loading SPION to reduce the aggregation and to develop a composite adsorbent in the cm-scale that could be used for industrial applications. EXPERIMENTS: SPION were in-situ synthesized by co-precipitation using a commercial cube-shaped sponge (MetalZorb®) as support. The morphology, iron-oxide phase, adsorption performance and thermodynamic parameters of the composite adsorbent were determined to better understand the adsorption process. X-ray absorption spectroscopy (XAS) was used to investigate the chemical state of the adsorbed As(III). FINDINGS: The adsorption of the supported SPION outperforms the unsupported SPION (ca. 14 times higher adsorption capacity). The modelling of the adsorption isotherms and the kinetic curves indicated that chemisorption is controlling the adsorption process. The thermodynamic analysis shows that the adsorption retains the spontaneous and endothermic character of the unsupported SPION. The XAS results revealed an adsorption-oxidation mechanism in which the adsorbed As(III) was partially oxidized to less toxic As(V) by the hydroxyl free radical (•OH) generated from Fe(III) species and by the hydroxyl groups.


Subject(s)
Arsenic , Arsenites , Water Pollutants, Chemical , Water Purification , Adsorption , Arsenic/chemistry , Arsenites/chemistry , Ferric Compounds/chemistry , Hydrogen-Ion Concentration , Kinetics , Magnetic Iron Oxide Nanoparticles , Water Pollutants, Chemical/chemistry , Water Purification/methods
15.
J Biosci Bioeng ; 133(4): 335-339, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35120813

ABSTRACT

Whole-cell sensors for arsenite detection have been developed exclusively based on the natural arsenite (As(III)) sensory protein ArsR for arsenic metabolism. This study reports that the quorum-sensing LuxR/Plux system from Vibrio fischeri, which is completely unrelated to arsenic metabolism, responds to As(III) in a dose-dependent manner. Due to as many as 9 cysteine residues, which has a high binding affinity with As(III), LuxR underwent As(III)-induced insoluble form, thereby reducing its effective cellular concentration. Accordingly, the expression level of green fluorescent protein under the control of Plux gradually decreased with increasing As(III) concentration in the medium. This is a novel As(III)-detection system that has never been proposed before, with a unique ON-to-OFF transfer function.


Subject(s)
Arsenites , Gene Expression Regulation, Bacterial , Repressor Proteins , Trans-Activators , Vibrio , Arsenites/analysis , Arsenites/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Quorum Sensing , Repressor Proteins/chemistry , Repressor Proteins/genetics , Repressor Proteins/metabolism , Trans-Activators/chemistry , Trans-Activators/metabolism
17.
Biochem Biophys Res Commun ; 551: 14-20, 2021 04 30.
Article in English | MEDLINE | ID: mdl-33714754

ABSTRACT

The blood-brain barrier (BBB) is the most critical obstacle in the treatment of central nervous system disorders, such as glioma, the most typical type of brain tumor. To overcome the BBB and enhance drug-penetration abilities, we used angiopep-2-modified liposomes to deliver arsenic trioxide (ATO) across the BBB, targeting the glioma. Angiopep-2-modified calcium arsenite-loaded liposomes (A2-PEG-LP@CaAs), with uniformly distributed hydrodynamic diameter (96.75 ± 0.57 nm), were prepared using the acetate gradient method with high drug-loading capacity (7.13 ± 0.72%) and entrapment efficiency (54.30 ± 9.81%). In the acid tumor microenvironment, arsenic was responsively released, thereby exerting an anti-glioma effect. The anti-glioma effect of A2-PEG-LP@CaAs was investigated both in vitro and in vivo. As a result, A2-PEG-LP@CaAs exhibited a potent, targeted anti-glioma effect mediated by the lipoprotein receptor-related (LRP) receptor, which is overexpressed in both the BBB and glioma. Therefore, A2-PEG-LP@CaAs could dramatically promote the anti-glioma effect of ATO, as a promising strategy for glioma therapy.


Subject(s)
Arsenites/chemistry , Calcium/chemistry , Drug Delivery Systems , Glioma/drug therapy , Liposomes/chemistry , Liposomes/pharmacokinetics , Peptides/chemistry , Animals , Arsenic Trioxide/chemistry , Arsenic Trioxide/pharmacokinetics , Arsenites/pharmacokinetics , Blood-Brain Barrier/metabolism , Calcium/pharmacokinetics , Cell Cycle , Cell Line, Tumor , Glioma/metabolism , Humans , Hydrogen-Ion Concentration , Mice , Mice, Nude , Peptides/pharmacokinetics , Tissue Distribution , Xenograft Model Antitumor Assays
18.
Angew Chem Int Ed Engl ; 60(14): 7570-7575, 2021 03 29.
Article in English | MEDLINE | ID: mdl-33427387

ABSTRACT

Arsenosugars are a group of arsenic-containing ribosides that are found predominantly in marine algae but also in terrestrial organisms. It has been proposed that arsenosugar biosynthesis involves a key intermediate 5'-deoxy-5'-dimethylarsinoyl-adenosine (DDMAA), but how DDMAA is produced remains elusive. Now, we report characterization of ArsS as a DDMAA synthase, which catalyzes a radical S-adenosylmethionine (SAM)-mediated alkylation (adenosylation) of dimethylarsenite (DMAsIII ) to produce DDMAA. This radical-mediated reaction is redox neutral, and multiple turnover can be achieved without external reductant. Phylogenomic and biochemical analyses revealed that DDMAA synthases are widespread in distinct bacterial phyla with similar catalytic efficiencies; these enzymes likely originated from cyanobacteria. This study reveals a key step in arsenosugar biosynthesis and also a new paradigm in radical SAM chemistry, highlighting the catalytic diversity of this superfamily of enzymes.


Subject(s)
Adenosine/chemistry , Monosaccharides/biosynthesis , S-Adenosylmethionine/chemistry , Alkylation , Arsenates , Arsenites/chemistry , Catalysis , Drug and Narcotic Control , Escherichia coli/genetics , Free Radicals/chemistry , Oxidation-Reduction , Signal Transduction , Tandem Mass Spectrometry
19.
Dalton Trans ; 50(1): 68-71, 2021 Jan 07.
Article in English | MEDLINE | ID: mdl-33320144

ABSTRACT

Arsenoplatin-1 (AP-1) is an innovative dual-action anticancer agent that contains a platinum(ii) center coordinated to an arsenous acid moiety. We found that AP-1 spontaneously aggregates in aqueous solutions generating oligomeric species of increasing length. Afterward, we succeeded in solving the crystal structure of the adduct formed between the model protein lysozyme and an early AP-1 oligomer that turned out to be a trimer. Remarkably, this crystal structure traps an early stage of AP-1 aggregation offering detailed insight into the molecular process of the oligomer's growth.


Subject(s)
Antineoplastic Agents/chemistry , Arsenic Trioxide/analogs & derivatives , Arsenites/chemistry , Cisplatin/analogs & derivatives , Coordination Complexes/chemistry , Muramidase/chemistry , Platinum/chemistry , Arsenic Trioxide/chemistry , Cisplatin/chemistry , Molecular Structure , Protein Binding , Solutions
20.
Chemosphere ; 261: 128160, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33113648

ABSTRACT

Up to now, complicated organoarsenicals were mainly identified in marine organisms, suggesting that these organisms play a critical role in arsenic biogeochemical cycling because of low phosphate and relatively high arsenic concentration in the marine environment. However, the response of marine macroalgae to inorganic arsenic remains unknown. In this study, Pyropia haitanensis were exposed to arsenate [As(V)] (0.1, 1, 10, 100 µM) or arsenite [As(III)] (0.1, 1, 10 µM) under laboratory conditions for 3 d. The species of water-soluble arsenic, the total concentration of lipid-soluble and cell residue arsenic of the algae cells was analyzed. As(V) was mainly transformed into oxo-arsenosugar-phosphate, with other arsenic compounds such as monomethylated, As(III), demethylated arsenic and oxo-arsenosugar-glycerol being likely the intermediates of arsenosugar synthesis. When high concentration of As(III) was toxic to P. haitanensis, As(III) entered into the cells and was transformed into less toxic organoarsenicals and As(V). Transcriptome results showed genes involved in DNA replication, mismatch repair, base excision repair, and nucleotide excision repair were up-regulated in the algae cells exposed to 10 µM As(V), and multiple genes involved in glutathione metabolism and photosynthetic were up-regulated by 1 µM As(III). A large number of ABC transporters were down-regulated by As(V) while ten genes related to ABC transporters were up-regulated by As(III), indicating that ABC transporters were involved in transporting As(III) to vacuoles in algae cells. These results indicated that P. haitanensis detoxifies inorganic arsenic via transforming them into organoarsenicals and enhancing the isolation of highly toxic As(III) in vacuoles.


Subject(s)
Arsenic/toxicity , Rhodophyta/drug effects , Water Pollutants, Chemical/toxicity , Arsenates/chemistry , Arsenates/toxicity , Arsenic/chemistry , Arsenites/chemistry , Arsenites/toxicity , Chromatography, High Pressure Liquid , Ecotoxicology , Gene Expression Regulation/drug effects , Mass Spectrometry , Monosaccharides/chemistry , Rhodophyta/genetics , Rhodophyta/metabolism , Seaweed/drug effects , Water Pollutants, Chemical/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...